Repairing subtelomeric DSBs at the nuclear periphery.
نویسندگان
چکیده
Nuclear organization creates microenvironments favoring distinct nuclear functions. In budding yeast, silent chromatin regions such as telomeres are clustered at the nuclear periphery, creating zones of transcriptional repression. Recently, in the Journal of Cell Biology, Therizols et al. report that "telomere tethering at the nuclear periphery is essential for DNA double strand break repair in subtelomeric regions". Here, we discuss these results and their functional implications.
منابع مشابه
Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region
In the yeast Saccharomyces cerevisiae that lacks lamins, the nuclear pore complex (NPC) has been proposed to serve a role in chromatin organization. Here, using fluorescence microscopy in living cells, we show that nuclear pore proteins of the Nup84 core complex, Nup84p, Nup145Cp, Nup120p, and Nup133p, serve to anchor telomere XI-L at the nuclear periphery. The integrity of this complex is show...
متن کاملCervantes and Quijote protect heterochromatin from aberrant recombination and lead the way to the nuclear periphery
Repairing double-strand breaks (DSBs) is particularly challenging in heterochromatin, where the abundance of repeated sequences exacerbates the risk of ectopic recombination and chromosome rearrangements. In Drosophila cells, faithful homologous recombination (HR) repair of heterochromatic DSBs relies on a specialized pathway that relocalizes repair sites to the nuclear periphery before Rad51 r...
متن کاملProcessing by MRE11 is involved in the sensitivity of subtelomeric regions to DNA double-strand breaks
The caps on the ends of chromosomes, called telomeres, keep the ends of chromosomes from appearing as DNA double-strand breaks (DSBs) and prevent chromosome fusion. However, subtelomeric regions are sensitive to DSBs, which in normal cells is responsible for ionizing radiation-induced cell senescence and protection against oncogene-induced replication stress, but promotes chromosome instability...
متن کاملMechanisms that regulate localization of a DNA double-strand break to the nuclear periphery.
DNA double-strand breaks (DSBs) are among the most deleterious forms of DNA lesions in cells. Here we induced site-specific DSBs in yeast cells and monitored chromatin dynamics surrounding the DSB using Chromosome Conformation Capture (3C). We find that formation of a DSB within G1 cells is not sufficient to alter chromosome dynamics. However, DSBs formed within an asynchronous cell population ...
متن کاملChromosome End Repair and Genome Stability in Plasmodium falciparum
The human malaria parasite Plasmodium falciparum replicates within circulating red blood cells, where it is subjected to conditions that frequently cause DNA damage. The repair of DNA double-stranded breaks (DSBs) is thought to rely almost exclusively on homologous recombination (HR), due to a lack of efficient nonhomologous end joining. However, given that the parasite is haploid during this s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Trends in cell biology
دوره 16 5 شماره
صفحات -
تاریخ انتشار 2006